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ABSTRACT

Massive computation of seismic traveltimes is widely used in seismic processing, e.g. for
the Kirchhoff migration of seismic and microseismic data. Implementation of the Kirchhoff
migration operators utilizes large pre-computed traveltime tables (for all sources, receivers
and densely sampled imaging points). We test the idea of using Artificial Neural Networks
for approximating these traveltime tables. The neural network has to be trained for each
velocity model, but then the whole traveltime table can be compressed by several orders of
magnitude (up to six orders) to the size of less than one megabyte. This makes it convenient
to store, share, and use such approximation for processing large data volumes. We discuss
some aspects of choosing the neural-network architecture, training procedure, and optimal
hyperparameters. On synthetic tests, we demonstrate reasonably accurate approximation of
traveltimes by neural networks for various velocity models. Final synthetic test shows that
using the neural-network traveltime approximation results in good accuracy of microseismic

event localization (within the grid step) in 3D case.
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INTRODUCTION

Seismic traveltimes are widely used in seismic processing. In particular, traveltimes are used
in the Kirchhoff-type depth migration operators in the reflection seismology (Biondo, 2006)
as well as microseismic monitoring (Duncan, 2005; Van Der Baan et al., 2013; Maxwell
et al., 2015). For implementing the Kirchhoff migration, one needs to know seismic-wave
traveltimes for a dense sampling of sources, receivers, and imaging points. For horizontally
layered models, there exist analytic formulas for the traveltime approximation: from the
simplest hyperbolic moveout to multi-parameter approximations (Stovas and Fomel, 2018).
However, for laterally inhomogeneous models, one usually has to pre-compute a large
number of traveltimes and save them to a hard disk for further use during the migration.
This becomes an additional serious effort to organize efficient access to this traveltime table
during the migration procedure, especially when optimizing it for modern high-performance
computing systems (Panetta et al., 2012; Rastogi et al., 2017). It is emphasized that
compression of the traveltime table is important for improving the migration performance
(Alkhalifah, 2011). It also suggested using the traveltime-table interpolation between sparse

samples (Li and Fomel, 2013).

Artificial neural networks (ANN) seem to be a promising tool for approximating the
traveltime tables to reduce their size. The advantage of using ANNs is that they effectively
implement a mapping approximating a function which is learned based on a given set of
input-output value pairs. Modern neural network architectures proved to be useful in solving
complicated problems such as image and speech recognition, translation of texts (Goodfellow
et al., 2016), and solving differential equations (Raissi et al., 2017). Machine-learning

and deep-learning methods are also used in geophysical applications including traveltime
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moveout parameterization (Ivanov and Stovas, 2017), seismic traveltime tomography
(De Wit et al., 2013; Bianco and Gerstoft, 2018), seismic migration (Vamaraju and Sen,

2019), and velocity model building directly from seismic data (Araya-Polo et al., 2018).

In this paper, we use ANN for approximating the traveltime table employed for the
processing of microseismic data using the Kirchhoff migration operator. We start with
a brief overview of the theory of surface microseismic data processing using migration
operators. Next, describe the proposed approach of approximating large seismic-wave
traveltime tables by ANNs. Then we perform several synthetic tests of the proposed ANN
traveltime approximation method showing reasonable accuracy and great compression rate.

This testing includes synthetic microseismic data processing by the Kirchhoff migration.

THEORY

Microseismic data processing by migration

Here we give a brief overview of surface microseismic data processing. The surface
microseismic monitoring data are characterized by a large number of recording channels,
but a low signal-to-noise ratio. In this case, for locating microseismic sources one can
use either the reverse-time imaging (Artman et al., 2010) or the Kirchhoff-type migration
operators (Duncan, 2005). In the latter case, we define a target volume for microseismic-
event localization and a scanning grid for building a migration image within this target
volume. Then we apply the migration operator, i.e. perform summation for each grid

point:
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where €, = ({xasEyas za) are the points of the scanning grid, « is a linear index for this
grid, x, = (%,,,,2,) is location of the receiver r, N, is the number of receivers, t is time,
u(t,x,) is microseismic data, 7(&,,%,) is traveltime of seismic wave from the source &, to

the receiver x,., further in the paper we will consider only P—waves.

For short time intervals, we construct an analog of the semblance measure by selecting

maximum in time:

S(€,) = maxS(€,,1). 2)

Finally, localization of the hypocenter E of the microseismic event can be found as a

location of the semblance maximum value:

€ = argmaxS(€,). (3)

There is the alternative approach to find the hypocenter position and its error estimates

in different directions (Anikiev et al., 2014):

gxzzx'zp(sa)v Ux:\/zl'_gx pra

x Y,z x
&=y S P, ayz\/zy )7 3o Plea) (4)
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5
This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.

© 2020 Society of Exploration Geophysicists.



REGjicenss qucopysightyseg, Terms of Use at http:/library.seg. @628l on in & w 0o —
A WN-—_LOCOVUONOOCULIDdDWN-—-=O

N O w»n

o

@ u EO%HLéaned&OQQQQQt

n

GEOPHYSICS

where E is the hypocenter location estimate, (o,,0,,0,) are standard deviations in

orthogonal directions, and

Pla) = C exp { = [s(6n) ~ max(s(en))] /20" | )

where o is standard deviation of S(&,), C' is a normalizing constant.

Traveltime table

Seismic-wave traveltimes are described by the eikonal equation:

1
V7| = 6
‘ T’ ‘r7 ( )

where V' = V(z,y, z) is seismic-wave velocity, 7 = 7(x,y, z) is seismic-wave traveltime,

V = (0/0xz,0/0y,0/0z) is the gradient operator.

For computing traveltimes one can use either ray tracing or numerical schemes for the
eikonal equation, e.g. Fast Marching Method (FMM) (Sethian, 1996) or Fast Sweeping
Method (FSM) (Zhao, 2005). The accuracy of the traveltime computation depends on the

grid step size.

For microseismic-monitoring applications, one usually wants to localize hypocenters of
microseismic events with the accuracy of about ten meters. Let us assume several thousands
of receivers for the surface microseismic survey and a 3D scanning grid about 200-250 points

019 values for the

in each dimension in the subsurface. Then we come up with about 1
traveltime table (number scanning grid points x number of receivers). Such traveltime

table is about 200 GB in size and needs to be stored on a hard disk and requires a careful
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organization of the input/output procedures during the migration processing.

Artificial neural networks

An artificial neural network is a system of interconnected artificial neurons. Each neuron
is a computational unit that performs the simplest mathematical operations on the input
data. The units can form connections with each other, forming complex-organized systems.
The type of action of a single unit and the type of interaction between units can be chosen

appropriately.

Modern ANN usually has three types of layers: input, hidden, output. Each layer has

a set of units, and the hidden layers execute the main transformations over data:

(7)
hivr = fig1(hy, ©41),

where X is input data, [ is index of the hidden layer, h; is input to the layer [ (hidden
state), hyj11 is output to the layer I, f; and ©; are the activation function and the weights

correspondingly.

The union of weights ® for all hidden layers should be determined during the process
of ANN training. Usually, there exists a training dataset (known as input-output pairs).
Then, ANN training tries to minimize a loss function measuring misfit between the ANN
prediction and the true values for the elements from the training dataset. The simplest
implementation of the training procedure would be the iterative gradient descent method.

We update the weights at each iteration (epoch) according to the equation:

7
This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.

© 2020 Society of Exploration Geophysicists.



REGjicenss qucopysightyseg, Terms of Use at http:/library.seg. @628l on in & w 0o —
A WN-—_LOCOVUONOOCULIDdDWN-—-=O

N O w»n

o

@ u EO%HLéaned&OQQQQQt

n

GEOPHYSICS

®i+1 = ®i - OéVJ(@i), (8)

where 7 is epoch number, ©; is ANN weights at epoch 4, « is learning rate, J(©) is the loss

function, VJ(®) is gradient of the loss function.

To speed up the ANN training procedure it is recommended to normalize the input data

first:

X = (X —p)/o, 9)

where pu, o are the mean value and standard deviation for each column of X.

From this overview, one can see that there are many parameters that define the ANN
structure and may affect its performance: number of hidden layers, number of units in
the hidden layers, the form of the activation function, the form of the loss function, and

optimization method used for training.

Approximation of traveltime table by neural networks

A set of points can be approximated via linear regression with some accuracy. So
one can build a hypothetical function that describes the given data, but the linearity
leads to limitations of choosing the hypothesis. At the same time, ANN uses nonlinear
regression, which can approximate more complex functions. Let us consider the problem of
approximating the traveltime table. Then, ANN should represent the function 7(&,,x;)
describing seismic-wave traveltime from the subsurface grid point &, to the receiver
X,. Then, we suggest the following procedure for approximating such multi-variable

traveltime function by neural networks. First, we prepare the training dataset by computing
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traveltimes 7(€,, X, ) on a coarse grid (any standard method of traveltime computation can
be used for this purpose). Second, we train ANN on the training dataset (supervised

learning approach).

For 2D case the traveltime depends on three parameters, 7(£zq, &z o, %r); for 3D case it
depends on five parameters, 7(€za,&yas &z as Xr, ¥,). Therefore, the input data for training

takes the form:

X1 5901 gz 1
X = : : : in 2D,

Xm gxm fzm

(10)
x1 ¥ &1 §y1 &a

X=| : :+ =+ i+ | in3D,

Xm ym ga:m fym §zm

where m is the number of training examples (or, number of source-receiver pairs). Before

training, the input data are normalized according to equation 9.

Note that ANN training should be repeated for each velocity model. But after training
we get a highly compressed representation of the function 7(§,,x,) for any pair of £, and
X,. So that it can be used to compute traveltimes on-the-fly for any dense grids required
for the migration operator (equation 1). In this paper, we address the problem of choosing
the optimal ANN structure. For this, we want to maintain the accuracy of ANN-based
traveltime approximation that is sufficient for the migration processing of microseismic
data. At the same time, we want to minimize ANN size to achieve better compression
and faster on-the-fly computation during the migration step. In the following section, we

show several tests for choosing optimal ANN parameters. We also estimate the accuracy of
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the ANN approximation of seismic-wave traveltimes and how it can affect the accuracy of

microseismic processing results.

TESTING

In this paper, we specify ANN type — fully connected neural network (each layer propagates
information to each unit of only the next layer) because this architecture is supposed to
be optimal for the function approximation problems (Cybenko, 1992). For building the
training dataset, we computed traveltimes on a coarse scanning grid £,. For this, we used
the numerical solver of the eikonal equation from (Nikitin et al., 2018), which provides the

first-arrival traveltimes.

After training ANN, we get the approximation of the traveltime table for a particular
velocity model. We first choose optimal ANN architecture. We perform several tests for a
simple velocity model checking the different number of hidden layers, the number of units
in the layer, some other hyperparameters. After choosing optimal architecture, we test how
the ANN approximation errors affect the hypocenter localization error. Then, we study the
influence of velocity model complexity on the ANN approximation accuracy. For this, we
used tests with the Marmousi model. Finally, we show compression rates and the results of

the migration processing of synthetic microseismic data in 2D and 3D.

Most of the tests contain the following steps: composing the training set by computing
the traveltimes from a coarse subsurface scanning grid to the receiver array (numerical
eikonal solver); composing the validation set by computing the traveltimes from a fine
subsurface scanning grid to the same receiver array (numerical eikonal solver); training

ANN on the training set for approximating traveltimes; validating ANN approximation

© 2020 Society of Exploration Geophysicists.

Page 10 of 34

10
This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.



Page 11 of 34

REGjicenss qucopysightyseg, Terms of Use at http:/library.seg. @628l on in & w 0o —
A WN-—_LOCOVUONOOCULIDdDWN-—-=O

N O w»n

o

@ u EO%HLéaned&OQQQQQt

n

GEOPHYSICS

on the validation set, i.e. check accuracy comparing ANN-predicted and pre-computed

traveltimes.

Selection of hyperparameters

Let us discuss the problem of choosing an optimal ANN structure. In all tests, we used the
Adam optimization method for ANN training (Kingma and Ba, 2014), the mean-squared-
error (MSE) as a loss function and the mean-absolute-error (MAE) as a quality metric on
the validation set. For initial tests, we chose a laterally inhomogeneous but comparatively
simple 2D velocity model (see Figure 1). For the training set, we computed traveltimes
from the coarse subsurface grid (20 x 20 points with 100-m step); for the validation set, we

computed traveltimes from the detailed subsurface grid (201 x 201 points with 10-m step).

On a series of preliminary tests, we chose several parameters for stabilizing and speeding-
up the training procedure. The final choice for the learning rate was 10~3 with a decay of
this learning rate by 10~ after each epoch (this decay should result in faster convergence).
Moreover, the additional reduction of the learning rate by a factor of 1.3 is applied in
case when convergence stagnates for three epochs. The batch size of 128 gave the best
training convergence in most of the preliminary tests. For the activation function in the
hidden layers, we used ReLU (z) = max(0,x) because it yielded the best accuracy in the
preliminary tests. The linear function was used as the activation function for the output
layer as we address the regression type of problem. Some of these recommendations may be
suitable for other problems of approximation, but it is not a generalization. For example,
reducing the learning rate often increases accuracy in many tasks, but using the activation

ReLU is not necessary. We can only recommend these parameters, at least as best-practice
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for traveltime approximation, based on numerous tests for different models.

We also performed tests for choosing two important ANN parameters: the number of
hidden layers and the number of units in these hidden layers. Note that both parameters
affect the ANN size that we would like to minimize. Accordingly, we seek the smallest ANN
that provides reasonable accuracy but retains a reasonable time for training. We show
testing results in Table 1. We checked ANNs using one-to-three layers. For each number of
hidden layers, we also iterated over different numbers of units in the hidden layers ranging
from 50 to 3000. Then for each case, we performed five independent training and validation
runs and averaged the values for approximation accuracy (MAE), training time, and ANN
model size. These values are shown in Table 1 (note that labels for columns are the same
for middle and lower sub-tables). To keep training time reasonably short, we used a smaller
number of units and fewer training epochs for ANNs with a larger number of hidden layers.
One can see that overall the training time and the ANN size grow significantly when we
increase the number of hidden layers and units. At the same time, ANN approximation
accuracy does not improve significantly. Thus, we conclude that the optimal choice would
be to use fewer hidden layers, but include more units. In particular, for this example, the
ANN with 3000 units provides reasonable approximation accuracy (1 ms) at reasonable
training time and extremely small size of about 60 KB. All of these tests were performed

on Intel Core i7-3770S CPU (3.1 GHz).

Table 1: ANN performance for traveltime approximation

© 2020 Society of Exploration Geophysicists.
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Approzimation and localization errors

Here, we consider the influence of ANN approximation error on the localization accuracy
for 2D case. We use the velocity model in Figure 1. For this velocity model, we prepared
synthetic microseismic data for true source location at point (500, 1000) m. For this data, we
used correct traveltimes, unit amplitudes, and the Berlage source wavelet with the central
frequency of 40 Hz (period AT is 25 ms). The sampling rate was 1 ms. Random noise was

added with the level of 20% of the maximum amplitude.

The testing parameters were the same as in the previous subsection. But here we
consider only one ANN model with one hidden layer and 3000 units. The learning curve is
shown in Figure 2. We saved several ANN models at a different stage of training as marked
in the figure (i.e., 10, 30, 50, 70 and 100 epochs). Then, we used ANN approximated
traveltimes to run the migration of the synthetic data using equation 1. Figures 3a-3c show
the results of the migration (semblances) using traveltime approximation by three ANN
models saved after: 10, 50, and 100 epochs, respectively. The color shows the semblance
level, and the position of the maximum gives the source location estimate (see equation 3);

the true source position is marked by red crosses.

From Figure 2 we see how ANN traveltime approximation accuracy gradually improves
with the number of training epochs: MAE of 5.4 ms after 10 epochs (14% of AT'), 3.2 ms
after 50 epochs (10% of AT'), and 1.2 ms after 100 epochs (5% of AT'). Note that all these
errors are considerably lower than the signal dominant period. Thus, it is not surprising that
we see well-localized semblance in all panels. Moreover, estimating the location error using
equation 4 gives the same value for all panels — about 14 m. This appears to be incorrect as

we can compare the location of the maximum with the true source location in this case. For
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three panels, the location errors are 30 m, 12 m, and 5 m correspondingly. So we conclude
that in course of training, ANN first produces over-smoothed traveltime approximations
that start focusing the semblance but producing a systematic bias in its maximum location.
During the final training phase, this systematic bias is gradually removed. Also, note that
if ANN training was not completed, then one can get clear semblance panels that may

produce source location estimates with a systematic shift.

Complezity of the velocity model and approzimation error

We next test how the training grid step and the velocity-model complexity affect the
accuracy of the ANN approximation for 2D case. For this, we used the slightly smoothed
Marmousi model (Figure 4a). We used 1361 receivers that were evenly distributed at the
surface. For the validation set, we computed traveltimes from the detailed subsurface grid
(1361 x 281 points with a step of 12.5 m spanning the entire model space). The validation
traveltime table has about 5-10% values (3.9 GB). For this velocity model, we also prepared
synthetic microseismic data for true source location at point (6250, 2500) m. This simplistic
data was generated by shifting to the corresponding time the same Berlage source wavelet
with unit amplitude. The central frequency of the source wavelet was 40 Hz; the sampling

rate was 2 ms; random noise was added with the level of 20% of the maximum amplitude.

To account for the complexity of the model, we used ANN with two hidden layers
and 500 units in these layers. For the training set, we computed traveltimes from the
coarse subsurface grid (ten times larger step, i.e. 135 x 28 points with 125-m step). The
training took five epochs. Errors of ANN approximation are shown in Figure 4b. Each

point shows ANN approximation error for the traveltimes from this location — MAE for all

© 2020 Society of Exploration Geophysicists.
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receivers at the surface. The largest errors are located in the area of the sharp structural
features (horizontal coordinate around 10 km). As an alternative approach, we use linear
interpolation from the coarse training grid to the fine validation grid instead of the ANN
approximation. Errors of such interpolation approach are shown in Figure 4c. Here again,
each point shows MAE for traveltimes from this point to all surface receivers. One can
see that the error distribution looks “patchy” in this case: zero errors at the points of the
coarse grid and rapidly increasing errors in between. However, despite the resultant better
accuracy of linear interpolation, the number of its coefficients depends on the grid step,
whereas the ANN approximation does not. With this grid step, the ANN takes only 1 MB,
when the linear interpolation requires about 300 MB, and more sophisticated interpolations

providing better accuracy require greatly more memory to store.

ANN approximated traveltimes were used for the synthetic data migration which took
about 3 hours on the CPU. The resultant semblance is shown in Figure 5a, and the zoom-
in of the area around the source is shown in Figure 5b. One can see that it has a quite
complicated structure. Note that we get the similar complicated structure of the semblance
when using the correct traveltimes (for the fine grid). So they must be caused by the
complexity of the model. We used equation 3 for estimating the source location. This gave

us the correct source position within the grid step accuracy (12.5 m).

Training grid step and approrimation error

We generated several training sets by using coarse grids spanning the same domain but
with a different grid-step size. We then used traveltimes on these coarse grids for the ANN

approximation and linear interpolation to a fine grid. The errors with respect to the grid
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step are shown in Figure 6. Errors are presented in MAE (ms) for the whole fine validation
set. Grid step is measured with respect to the step of the validation grid, e.g. a value of 12
means that the coarse grid step consists of every 12th point of the fine grid. The blue line
shows errors of the ANN approximation, while the red line shows the errors of the linear
interpolation. Figure 6a shows approximation errors for the simple model (see Figure 1);
Figure 6b shows approximation errors for the Marmousi model (see Figure 4a). One can
see that linear interpolation works better for a fine version of the training grid (small grid
size), i.e. when the training grid is very close to the validation grid. However, for a coarse
training grid, the ANN approximation starts outperforming the linear approximation. Also,

note that ANN approximation performs very well for the simple velocity model.

Testing on 3D model

We have built the 3D velocity model by taking the part of the Marmousi model, see Figure 7,
and duplicating it in the third direction (y-axis). We used 128 x 128 regular receiver grid at
the surface. For the validation set, we computed traveltimes from the detailed subsurface
grid (128 x 128 x 128 points with a step of 27.5 m). Then the validation traveltime table
has 128% values and size of 256 GB. For the training set, we computed traveltimes from
the coarse subsurface grid (13 x 13 x 13 points with 275-m step); then the training set size
is about 275 MB. For this velocity model, we also prepared synthetic microseismic data
for true source location at point (1925,1925,1925) m. Synthetic data was generated by
simply shifting to the corresponding time with the same Berlage source wavelet with unit
amplitude. The central frequency of the source wavelet was 40 Hz; the sampling rate was

2 ms; random noise was added with the level of 20% of the maximum amplitude.
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We used ANN with one hidden layer and 3000 units. The training took about 15
minutes (three epochs), and MAE for all subsurface points was about 2 ms. Then ANN
approximated traveltimes were used for processing the synthetic data using the migration
procedure. This migration took about 120 hours. The normalized summation energy from
equation 1 (analog of semblance) is shown in Figure 8. The yellow color indicates the area
of probable location. The estimated source location (maximum of the semblance) coincides

with the true source position.

We then compared two implementations of the migration procedure. We show the
results of in Table 2. The first strategy (labeled as “Table”) relies on reading the huge
traveltime table (256 GB) from the disk for using them in the migration. The second
strategy (labeled as “ANN”") uses ANN approximation of the traveltimes. The final ANN
size is very small (82 KB) which corresponds to the dramatic compression rate of the
order of 10%. Traveltimes are then computed on-the-fly during the migration. We checked
two migration implementations: CPU (Intel Core i7-3770S) and GPU (NVIDIA Tesla P4).
These tests show that using ANN-compressed representation of the traveltime table has
only a slight effect on the computational time (presented in hours). It is only 2 % slower

on the GPU (although it may be 12 % slower on the CPU).

Table 2: 3D migration implementation using pre-computed (Table) and ANN-approximated

(ANN) traveltimes.
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DISCUSSION

In this section we wanted to make a few comments on the testing results from the previous
section. ANN approximations of the traveltime table were trained on the traveltimes that
were pre-computed on a coarse grid. Alternatively, various smart interpolation methods
may be used for predicting traveltimes from the same values on the coarse grid. In our tests
we used for comparison only simple linear interpolation. However, we speculate that ANN
is a more promising tool for traveltime approximation because of several reasons. The main
observation of this paper is that the ANN approximation provides unique strong compression

together with efficient way of extracting required traveltime values during imaging.

Another aspect is that ANN training can be performed for irregular grid without any
change. In our tests traveltimes were pre-computed on the regular grid. But we observed
that the approximation errors tend to be concentrated in the areas with high velocity model
complexity. One can locally add points with pre-computed traveltimes and add them to
the ANN training without any change of the procedure. This may be a flexible tool for
increasing accuracy of the ANN traveltime approximation. We have also tried to speed
up the ANN training convergence by using the retraining methodology (it means that we
start from the ANN that was trained for some other velocity model). Unfortunately, in our
experiments the retraining idea showed bad results — training ANN from the scratch for a

new velocity model was always better.

Finally, we want to mention that the ANN approximation does not only provide high
compression rate, but it is also very efficient in computing derivatives of the approximated
function. In particular, the ANN approximation provides easy access to kinematic attributes

of the traveltime table, e.g. apparent velocities with respect to the receiver and the source

© 2020 Society of Exploration Geophysicists.
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coordinates. So it might be useful for implementing various types of beam migration.

CONCLUSIONS

Implementation of the Kirchhoff migration operators utilizes large pre-computed traveltime
tables (for a dense sampling of sources, receivers, and imaging points). In this paper,
we used fully connected neural networks for approximating these traveltime tables. The
neural network has to be trained for each velocity model, but then we achieved strong
compression — up to six orders of magnitude (reducing size from 256 GB to 100 KB). We
discussed the choice of optimal neural-network hyperparameters for boosting the training
process. Our testing showed that one hidden layer is sufficient for approximating traveltimes
in simple velocity models. Two hidden layers are required for approximating traveltimes
in more complex velocity models. Note that here we considered only isotropic cases, but
it is straightforward to apply the proposed approach for approximating and compressing

traveltimes in anisotropic velocity models as well.

Highly compressed neural-network approximation makes it convenient to store, share,
and use such traveltime approximation in processing large data volumes. During the
migration procedure, traveltimes are then computed on-the-fly from this approximation.
We showed tests of using the neural-network approximated traveltimes for microseismic
data processing - source localization using the migration operator in 2D and 3D. Note
that computing traveltimes on-the-fly from the compressed neural-network representation
has a very small impact on the migration computational time — it adds about 2 % of the

computational burden when the migration is implemented on a GPU.
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Figure 2: ANN learning curves on train (blue) and test (orange) datasets; black stars indicate moments of
saving intermediate ANN models.
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Figure 4: Approximation of traveltime table for Marmousi: velocity model (a); the map of errors of the ANN
approximation for subsurface grid (MAE in ms) (b); the map of the errors of the linear interpolation (MAE in
ms) (c).
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Figure 8. The result of migration in the 3D model using the ANN traveltime approximation; the color shows

normalized summation energy from equation 1.
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Table 1: ANN performance for traveltime approximation

GEOPHYSICS

1 hidden layer, 100 epochs

Units 100 | 250 | 500 | 1000 | 1500 | 2000 | 2500 | 3000
MAE, ms || 54 | 34 | 2.2 1.6 1.3 1.2 1.1 1.0
Time, sec || 170 | 175 | 185 | 245 270 320 370 460
Size, KB 2 5 10 20 29 39 49 59

2 hidden layers, 80 epochs

Units 50 | 75 | 100 | 150 | 200 | 300 | 400 | 500
MAE, ms || 3.8 | 2.6 | 2.5 1.4 1.2 0.8 0.6 0.6
Time, sec || 160 | 170 | 190 | 210 230 245 280 380
Size, KB 11 24 41 91 161 359 634 988

3 hidden layers, 60 epochs
MAE, ms || 3.8 | 2.7 | 1.9 1.3 1.0 0.7 0.6 0.5
Time, sec || 130 | 145 | 170 | 210 230 250 290 480
Size, KB 21 46 81 180 318 711 1261 | 1967
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Table 2: 3D migration implementation using pre-computed (Table) and ANN-approximated

(ANN) traveltimes.

Table | ANN

Size 256 GB | 82 KB
Compression 1.6 - 105 times

CPU 105.9 h | 119.7 h

GPU 99.1h | 100.7 h
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